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ANALYTICAL DETERMINATION OF TEE TAKE-OFF PERFORMATYCE 

OF SOME REPRESENTATIVE SUPERSONIC 

TRANSPORT CONFIGURATIONS 

By Robert L. Weirich 
Langley Research Center 

SUMMARY 

The take-off performance characteristics of typical supersonic transport 
configurations have been analytically determined with aerodynamic characteris- 
tics representative of both delta-wing and variable-geometry configurations. 
The investigation considered conditions where the thrust was assumed constant 
and where the thrust decreased with increasing velocity. Optimum full-power 
take-off distances and Civil Air Regulation runway lengths were obtained, and 
the results agree, generally, with previous similar studies. First-order empir- 
ical relations were determined which correlate the data well. Design nomograms 
derived from these empirical relations are presented. The results indicate, 
in general, that the take-off performance of the typical supersonic transports 
considered can be comparable to or better than present subsonic jet transports. 

INTRODUCTION 

One of the important areas for consideration in the design of the super- 
sonic commercial transport is the take-off requirements. It is generally agreed 
that little, if any, deterioration from take-off performance levels of current 
subsonic jet transports wiil be allowed. Improvements in performance over sub- 
sonic jet transports would, of course, be desirable. 

Several analytical studies have been made of the take-off characteristics 
of various types of configurations (for example, refs. 1, 2, and 3). However, 
no simple method of predicting take-off performance of supersonic transports is 
currently available. Also, little attention has been given to the effect of 
thrust decrease during acceleration, which could be particularly significant 
with turbofan engines. 

The purpose of this investigation was to provide an assessment of the take- 
off distance requirements of some typical supersonic transport configurations 
and to correlate the results so that they may be applied to similar configura- 
tions. The take-off distance requirements were determined by analytical and 
numerical integration of the two-degree-of-freedom equations of motion on an 
electronic data processing machine. The aerodynamic characteristics, 



propulsion characteristics, and wing loadings assumed for the present study are 
representative of those associated With supersonic transport configurations 
currently of interest. 
power take-off distance and on the Civil A i r  Regulation runway length are pre- 
sented and discussed. 

The effects of these parameters on the minimum full- 
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c r i t i c a l  engine f a i l u r e  speed, knots 

a i rplane weight a t  take-off,  l b  

wing loading, lb/sq f t  

angle of a t t ack  o r  ro ta t ion  angle, deg 

maximum angle of a t t ack  avai lable  due t o  l i m i t s  of a i rplane 
geometry, deg 

f l ight-path angle, radians 

coef f ic ien t  of r o l l i n g  f r i c t i o n  

densi ty  of air, slugs/cu f t  

METEOD OF ANALYSIS 

For t h i s  study, the  take-off procedure w a s  divided in to  three segplents: 

The equations which 
(1) accelerat ion from zero ve loc i ty  t o  i n i t i a t i o n  of a i rplane rotat ion,  (2)  rota- 
t i o n  t o  l i f t - o f f ,  and ( 3 )  l i f t - o f f  t o  35-foot a l t i t ude .  
w e r e  used f o r  these various phases of the  take-off a r e  as follows: 

Pr ior  t o  rotat ion:  

During rotat ion:  

After l i f t - o f f :  

1 W(F - .) s w  

ds 
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These rigid-body equations of motion were formulated with the following 
assumptions: the thrust axis was parallel to the aircraft reference axis and 
the flight-path angle 7 was small so that sin 7 x 7 and cos 7 1. The 
calculations were made for standard day conditions and incorporate the assump- 
tion that the wing loading, coefficient of friction, and rate of rotation remain 
constant during the applicable phases of each take-off. Values of thrust were 
selected such that the airplane neither decelerated nor lost altitude during 
take-off. The performance of both delta-wing (low-aspect-ratio) and variable- 
geometry (high-aspect-ratio) configurations was studied by using the representa- 
tive aerodynamic characteristics presented in figure 1. Ground effects on the 
aerodynamic characteristics were not considered in the present study. A summary 
of the range of pertinent variables is presented in table I. 

For each set of design conditions for the two types of airplanes, an opti- 
mization procedure was necessary to determine the rotation speed 
resulted in the minimum take-off distance. 
The variation of velocity, angle of attack, and altitude with distance for a 
typical take-off is presented in figure 2. This typical take-off consists of 
the following three steps : 

Vr 
(See ref. 1 for additional details.) 

which 

(1) An acceleration on the ground with the configuration in a low-lift 
low-drag attitude (eq. (1)) 

(2) A constant-rate-of -rotation segment (eq. (2)) 

( 3 )  A constant-angle-of-attack climbout segment (eqs. ( 3 )  ) 

The feasibility of such a maneuver has been demonstrated in reference 4. 

Most of the results are presented for a constant thrust-weight ratio. 
However, since thrust does vary with speed, the effect of this variation has 
been examined. A thrust decrease given by the empirical relation 

was usea prior to the initiation of rotation. The constants C1, C2, and C 3  
are presented in table 11. The thrust was assumed constant after the start of 
rotation, since it changes relatively little from then until the 35-foot alti- 
tude is reached. 
figure 3 and are compared with curves which are typical of advanced nonafter- 
burning turbojet and turbofan engines. 

The thrust variations which were used are presented in 

FESULTS AND DISCUSSION 

The results of the present investigation are presented in figure 4 for the 

The minimum horizontal distance (neglecting Civil 
representative combinations of wlng loading, constant thrust-weight ratio, and 
aerodynamic characteristics. 
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Air Regulations (CAR)) in which th6 airplane can take off and reach a 35-foot 
altitude is shown as a function of the wing loading divided by maximum available 
lift coefficient, 1. 
if rotation is initiated at the optimum speed, as discussed in reference 1. 
Generally, the data indicate that take-off distance varies linearly with wing 
loading and almost inversely with thrust-weight ratio and maximum available lift 
coefficients. 

w s  The distance presented is that which may be attained 
CL, ma 

A comparison of the present results with those of other references is pre- 
sented in figure 5. The minimized distance is presented as a function of wing 
loading divided by the maximum available lift coefficient multiplied by thrust- 

. The circular symbols represent the data from this weight ratio, w/s 
CL, ma( Fs t /w) 

study, whereas the other symbols represent data from similar studies. The solid 
line is an empirical relation which has been used for some time. Generally, the 
results obtained here agree very well with those of similar studies. Further, 
it is apparent that, for the range of variables considered, the empirical rela- 
tion provides a good approximation of the take-off distance. For design pur- 
poses, a nomogram of the empirical relation is presented in figure 6. 

The preceding results have been presented for constant thrust and weight 
throughout the take-off maneuver. Actually, the weight will, generally, vary 
by less than 1 percent during the portion of the take-off up to a 35-foot 
altitude. However, the thrust decreases by several percent, particularly prior 
to the initiation of rotation and when afterburning is not used. The effect of 
this thrust decrease on distance is presented in figure 7. Optimum take-off 
distance to a 35-foot altitude is shown plotted against wing loading for two 
types of thrust conditions: constant thrust equal to the static value and 
thrust which decreases (prior to rotation) as shown by the empirical relations 
in figure 3. The increase in distance due to thrust decrease amounts to between 
4 and 18 percent of the distance for a constant thrust equal to the static 
value. 

The runway distance which an airplane requires is presently defined by 
Special Civil Air Regulations (ref. 5). The purpose and overall effect of this 
regulation is to insure safe operation of commercial airplanes during take-off. 
(See, also, ref. 1.) The required runway distance is defined as the distance 
to accelerate to a speed Vl, experience an engine failure, and either continue 
the take-off to the 35-foot altitude or stop on the runway. The speed Vi is 
determined such that the additional runway distance to reach a 35-foot altitude 
(one engine out) is equal to the distance required to stop the airplane on the 
runway. In no case may the required runway length be less than 115 percent of 
the full-power take-off distance. 

Another condition of C A R  is that Vr may not be less than Vi. In the 
case of high maximum available lift coefficients, the minimum full-power take- 
off distance occurs with (Vr), t <  V i ,  as shown in figure 8. The effect of J P  
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applying the condition that 
shown in figure 9.  As the figure indicates, however, this effect is small. 

Vr 2 V1 is to increase the take-off distance, as 

In figure 10 the CAR runway lengths for four-engine airplanes are compared 

The runway lengths are presented both 
with full-power distances for two configurations. For full power, constant 
thrust is assumed and 

with and without thrust variation. These results include a reverse thrust 
deceleration of about one-third the maximum thrust remaining after engine 
failure. However, other results not included in this report indicate that the 
effect of including thrust reversal is relatively small. The percentage 
increase in CAR field length over f'ull-power take-off distance tends to remain 
about constant with variations in lift coefficient and tends to become larger 
with wing loading. 

(V r ) FP,opt 2 Vi. 

The C A R  runway lengths which have been calculated for a constant thrust- 
weight ratio can be approximated by the empirical relation as shown in figure 11. 
The empirical relation is 115 percent of the full-power distance plus 750 feet. 
The data include those of figure 10 as well as other computations; again, 
reverse thrust is included. The results of references 1 and 3 also show reason- 
able agreement with the empirical relation. 
empirical relation of figure 11 is presented as figure 12. 

A design nomogram based on the 

The CAR runway lengths have included a 2.0-second delay to allow the pilot 
a period to decide, after an engine failure, whether to continue take-off or to 
stop. The typical curves in figure 13 indicate the CAR runway length which is 
attributable to the time delay, both for a 2.0-second delay and for a 2.5- 
second delay. Obviously, the time delay is a significant portion of the take- 
off procedure. However, the increase in distance corresponding to the use of 
a 2.5-second delay as opposed to the 2.0-second delay is relatively small. 
Thus, s m a l l  variations in time delay would be expected to produce o n l y  a small 
effect on the empirical relation in figures 11 and 12. 

The variation of CAR runway length with lift-off speed is presented in 
figure 14 for typical supersonic transports with thrust-weight ratios between 
0.3 and 0.4. The aerodynamic characteristics are those presented in figure 1 
and the wing loadings are noted in figure 14. 
to turbofan engines is included, and the take-off performance of typical sub- 
sonic jet transports is also presented. The figure shows the region in which 
the supersonic transport will probably operate and the relations of the super- 
sonic transport performance to that of the subsonic jet transports. It is 
apparent from the figure that take-off performance equivalent to or better than 
the present subsonic jet transports is feasible. 

A thrust decrease corresponding 

CONCLUDING REMARKS 

The take-off performance characteristics of typical supersonic transport 
configurations have been analytically determined with aerodynamic characteris- 
tics representative of both delta-wing and variable-geometry configurations. 
The investigation considered conditions where the thrust was assumed constant 
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and where the thrust decreased with increasing velocity. Optimum full-power 
take-off distances and Civil Air Regulation runway length were obtained, and 
the results agree, generally, with previous similar studies. First-order empir- 
ical relations were determined which correlate the data well. Design nomograms 
derived from these empirical relations are presented. The results indicate, in 
general, that the take-off performance of the typical supersonic transports con- 
sidered can be comparable to or better than present subsonic jet transports. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., February 26, 1964. 
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TABLE I.- VALUES OF VARIABIJ3S CONSIDERED 

Turbofan 

Wing loading, W/S . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 to 120 (increments of 10) 
Thrust-weight ratio, F/W . . . . . . . . . . . . . . . . . . . . . . .  0.3 to 0.6 (increments of 0.1) 
Maximum available lift coefficient, C L , ~  . . . . . .  1.14 to 2.2 for variable-geometry configuration; 

0.6 to 1.0 for delta-wing configuration 

0.05 for delta-wing configuration 
Lift-curve slope per degree, 

Coefficient of friction, p . . . . . . . . . . . . . . . . . . . .  0.02 for take-off; 0.20 for braking 
3 

. . . . . . . . . . . . .  0.10 for variable-geometry configuration; cLa 

da Fhte of change of angle of attack, E, deg/sec . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum available angle of attack, %, deg . . . . . . . . .  12 for variable-geometry configuration; 

10 and 14 for delta-wing configuration 
Time delay for CAR calculation, sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.0 
Density of air, p, slug/cu ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.002377 
Acceleration of gravity, g, ft/sec2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32.2 

0.940 0 957 16.0 

.%5 3.64 27.0 

TABU 11.- CONSTANTS FOR EMPIRICAL TERUST VARIATION 

I Engine C1 c3 



a, 

Figure 1.- Assumed aerodynamic characteristics of the delta-wing and variable-geometry 
supersonic transport configurations. 
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Figure 5.- Comparison of present results with those of previous investigations. 
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Figure 10.- CAR runway length f o r  typical four-engine supersonic transport configurations. 
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